Trigonometry project

Updated: 5/12/2020
This storyboard was created with StoryboardThat.com

Storyboard Text

• Hi my name is Lu Keran and I am fancinated in achritecture! Let me bring you around the city and show you what i mean!
• Here are some basics you need to know before we begin!
• ﻿Find angle using tan:given the side opposite to angle and adjacent sidetan(<B)=AC/BC
• ﻿Find angle using cos:Given adjacent side and hypotenuse .cos(<B)=BC/AB
• If they give us the Hypotenuse and ask us to find the adjacent side we need to reverse the process using cos.
• Find side using sin:gives the hypotenuse asks for the opposite side of anglesin=(<B)=AC/BC
• ﻿Find angle using sin:given Short leg and Hypotenusesin(<A)=BC/AB
• ﻿Find side using tan:given adjacent side asks to find side opposite of angletan(<B)=AC/BC
• In this case is we are given the adjacent side and are asked to fine the side opposite of the angle we are asked to find the adjacent side using tan.
• ﻿AC= the opposite side of the angle<B= 70BC= the adjacent side (30)
• 70
• 30 ft﻿
• tan (<B)=AC/BCtan(70)=AC/30AC= 30 times tan(70)= 82.4 ftx= 82.4 ft
• X
• You might be wondering why we need to measure this triangle well it is because for the contruction people need to know how tall to build the top ﻿﻿﻿of the building.
• In order to build this skate ramp at what angle must the ramp be at?
• BC= the side opposite to the angleAB= hypotenuse<A= missing angle
• sin(<A)=BC/ABsin(<A)=(5/8)<A= sin^-1(5/8)<A= 38.68
• If the diagram has given us the Hypotenuse and the side opposite to the angle then they are asking for use to find the angle using sin.
• ?
• what is the half the length of the bed?
• BC= adjacent sideAB= Hypotenuse (3.11)<B=50
• cos(<B)= BC/ABcos(<B)=BC/3.11cos(<50) times 3.11=BCBC=2
• 50
• 3.11 ft
• ?
• Welcome to the end of the tour Trigonometry might seem hard but its is just a bunch of memorizing formulas and plugging in numbers!