https://www.storyboardthat.com/lv/lesson-plans/ievads-ģeometrija

Ievads Ģeometrija

Anna Warfield Nodarbības Plāni

Atrodiet vairāk tādu izklājlapu darbību kā mūsu pamatskolas kategorijā!

Ievads Ģeometrijas Nodarbību Plānos

Studentu aktivitātes par Ievads Ģeometrija Iekļaut:

Agrīnās klasēs skolēni sāk atpazīt, nosaukt un zīmēt figūras. Tā kā studenti kļūst arvien progresīvāki, ģeometrija kļūst sarežģītāka. Skrituļdēļu izmantošana ir lielisks veids, kā skolēniem parādīt, ko viņi ir iemācījušies, manipulēt ar formām, veidot formas no segmentiem un citām formām, kā arī izveidot diagrammas vai citus grafiskos rīkotājus, lai sakārtotu informāciju par īpašībām vai īpašībām.

Ģeometrija ir iespēja vizuālās un telpiskās domāšanas prasmēm attīstīties vai uzplaukt. Jaunas formas maiņa uz citu orientāciju var dot dažiem skolēniem iespēju beidzot redzēt šo akūtu leņķi vai pateikt, vai šīm abām pusēm patiešām ir vienāds garums. Viens ieguvums, izmantojot Storyboard That ir, ka studenti spēj rotēt objektus. Rotējošais rīks ir lieliski piemērots precīzai kustībai, vai arī izmantojiet flip vai rotējiet 90 grādu pogas, lai ātri atvērtu to pašu formu.


Izveidot Montāžas Skala 

(Tas sāks 2 nedēļu bezmaksas izmēģinājuma versiju - kredītkartes nav nepieciešamas)


Ievads Ģeometrija Nodarbību plāni, studentu aktivitātēm un grafiskie organizatori

Ģeometrijas Noteikumi

Viesnīcas Ģeometrija - Ģeometrija Vocab
Viesnīcas Ģeometrija - Ģeometrija Vocab

Piemērs

Pielāgot šo izklāsts

(Tas sāks 2 nedēļu bezmaksas izmēģinājuma versiju - kredītkartes nav nepieciešamas)




Ģeometrija, ir daudz jaunu vārdnīcu studentiem apgūt. Ne tikai tie ir nepieciešams, lai noteiktu formas, piemēram, taisnstūra un trīsstūra, bet viņiem ir nepieciešams, lai varētu identificēt daļas, piemēram, bāzes, kājas neass leņķi, virsotne, un vairāk! Veidot diagrammas, piemēram, viena zemāk, studentiem vai skolēniem, lai palīdzētu viņiem organizēt jaunas koncepcijas un ir atskaites punkts pārskatīšanai.

Studenti atzīst kvadrāti, apļi un trijstūrus viegli pietiekami, bet tādi vārdi kā "ray" un "perpendikulāri" parasti ir jauni termini. Šie nepazīstamiem vārdi ir arī svarīga, lai izprastu sarežģītāka ģeometrija. Keep diagrammas tīrs un vienkāršs, cik vien iespējams. Ja piemērs attēlus uz diagrammas ir pārāk traucējoša, mēģiniet atsevišķu slaidrādi ar vairākiem piemēriem, kā jums iet pār jaunus vārdus ar savu grupu vai klasi.


Ieteicamie BEGINNING. Ģeometrijas noteikumi


punkts Vienu vietu kosmosā vai uz līdzenas virsmas
līnija Kolekcija punktiem, kas turpinās mūžīgi abos virzienos
nogrieznis Daļu no līnijas ar diviem galapunktiem
stars Daļu no līnijas ar vienu parametru
leņķis Divi stari, kas dalās ar galapunktu
Parallel Lines Līnijas, kas nekad krustoties
kas krusto Lines Līnijas, kas iet caur to pašu punktu
perpendikulāri līnijas Līnijas, kas krustojas un veido četri taisnā leņķī



Izveidot Montāžas Skala 

(Tas sāks 2 nedēļu bezmaksas izmēģinājuma versiju - kredītkartes nav nepieciešamas)


Poligons Kārtošana Aktivitāte

Intro Ģeometrija - Poligons Šķirošana
Intro Ģeometrija - Poligons Šķirošana

Piemērs

Pielāgot šo izklāsts

(Tas sāks 2 nedēļu bezmaksas izmēģinājuma versiju - kredītkartes nav nepieciešamas)




Studenti jau būs iepazinušies ar daudziem, daudziem formas, bet viņi nevar zināt matemātiskas nosaukumiem. Viens vienkāršs veids, kā sākt, ir noteikt, vai forma ir daudzstūris. Poligons ir slēgta skaitlis, kas sastāv no vismaz trim pusēm un leņķiem. Trīsstūri, quadrilaterals, pentagons, seškantis, utt visi poligonus. Jebkura forma ar līknēm, vai atvērtiem galiem NAV daudzstūris. Daudzstūrus var būt dīvaini formas, ir izliekti un ieliekti puses, un var būt jebkurš skaits pusēs.

Vai skolēni pāriet formas no veidnes uz atbilstošajās slejās savā montāžas skalā. Interaktīvās tāfeles un prognozētās datoru ekrāniem padara šo saistošu klases darbību, bet studenti var tikpat viegli strādāt individuāli vai pāros datorā.

Skatīt arī Polygonia un Roundsville īsu matemātikas stāstu.

Daudzstūriem var iedalīt pēc skaita sāniem (un tātad leņķi) tie ir:

  • Trīs sided daudzstūri - trīsstūri
  • Četrpusējās daudzstūri - quadrilaterals
  • Piecu sided daudzstūri - pentagons
  • Sešu sided daudzstūri - sešstūru
  • Septiņu sided daudzstūri - heptagons *
  • Astoņu sided daudzstūri - octagons
  • Nine-sided daudzstūri - nonagons *
  • Desmit sided daudzstūri - decagons *
  • Vienpadsmit-sided daudzstūri - hendecagons *
  • Divpadsmit sided daudzstūri - dodecagons *

* Šīs formas nav prasīts Kopējā Core, bet tas ir jauki, ir vārdi ērts, ja interesējaties prāti vēlas zināt.


Izveidot Montāžas Skala 

(Tas sāks 2 nedēļu bezmaksas izmēģinājuma versiju - kredītkartes nav nepieciešamas)


Īpašas Iezīmēto Vārdi

Intro Ģeometrija - Lost Flyers
Intro Ģeometrija - Lost Flyers

Piemērs

Pielāgot šo izklāsts

(Tas sāks 2 nedēļu bezmaksas izmēģinājuma versiju - kredītkartes nav nepieciešamas)




Gan trijstūri un quadrilaterals ir lielas grupas. Viens no standartu pamatskolas klašu ir spēt atpazīt formas un kategorizēt tos. Ir daudzas lietas, kas jāatceras par katru daudzstūris, un tas var būt grūts, lai saglabātu tos visus uzreiz.


Klasificēt trīsstūri


trīsstūri var nosaukt par abām pusēm un leņķiem, veicot septiņas dažāda veida trijstūri.
(Skat TRIANGLE diagrammas iepriekš)
vienādmalu trīsstūra ir vienādas sānu garumu un vienādas leņķa mērījumus.
scalene trīsstūri ir dažāda garuma, lai katrā pusē.
vienādsānu trīsstūri ir vismaz divas puses ar vienāda garuma.
(An vienādmalu trīsstūris ir arī vienādsānu trijstūris)
Akūts trīsstūri ir trīs akūtas leņķi.
Labā trīsstūri ir viena pareizā leņķī un divas akūtu leņķi.
stulbs trīsstūri ir viens plats leņķis un divi akūti leņķi

Īpašas quadrilaterals


Kvadrāts četrstūris ar četrām vienādām malām un četri taisnā leņķī
Taisnstūris četrstūris ar četriem taisnā leņķī
rombs kvadrātveida ar četrām vienādām pusēm
paralelograms kvadrātveida ar divām paralēlām malām
Trapece četrstūris ar vienu pāri paralēlu malu
klija kvadrātveida ar diviem pāriem blakusesošo saskanīgs pusēs

virs saraksti, piemēram, tie satur noderīgu informāciju, bet var būt pārāk izplūdis un neskaidrs. Diagrammas ar attēliem un etiķetēm dažkārt vairāk kazlēnu draudzīgas (vai tikai vēl draudzīgāku kopumā). Dažreiz padarīt diagrammu pēc diagrammas var kļūt garlaicīgs un juceklis smadzenes, tāpēc nedaudz extra atjautība var iet garu ceļu.

Šeit ir daži piemēri skrejlapas, lai palīdzētu atrast un identificēt dažas kopīgas vai regulāra daudzstūra kas ieguvušas "pazudis". Studenti var arī baudīt pieņemšanas meklēt mūsu Plakāti jebkādiem likumpārkāpšana daudzstūru vai "modes" atsauksmes par slavenību poligoniem. Lai pievienotu seju ar formām, tipa "seju" uz meklēšanas laukā.


Izveidot Montāžas Skala 

(Tas sāks 2 nedēļu bezmaksas izmēģinājuma versiju - kredītkartes nav nepieciešamas)



Trijstūru diagrammā ir skaidrs, ka formas paliek nemainīgas pat tad, ja tās ir apgrieztas. Studenti jebkurā laikā var ieslēgt savus papīrus vai piezīmjdatorus, ja viņiem nepieciešams atšķirīgs skats uz formu vai leņķi.


Izveidot Montāžas Skala 

(Tas sāks 2 nedēļu bezmaksas izmēģinājuma versiju - kredītkartes nav nepieciešamas)


Intro to Geometry - Triangle Chart
Intro to Geometry - Triangle Chart

Piemērs

Pielāgot šo izklāsts

(Tas sāks 2 nedēļu bezmaksas izmēģinājuma versiju - kredītkartes nav nepieciešamas)


Start My Bezmaksas Izmēģinājuma

Sākumā ģeometri dažreiz cīnās, liekot zīmējumiem sekot viņu domām. Frustācijas punkts nespēj radīt formu, kuru viņi mēģina izdarīt, jo trūkst prakses vai grūtības ar motora kontroli. Kamēr viņi mācās apgūt dažādas formas, skolēni var izmantot Storyboard That lai demonstrētu savas zināšanas. Spider-kartes , Frayer modeļi vai T-Diagrammas ir lieliski veidi, kā skolēniem rādīt informāciju, ko viņi iemācījušies.


Izveidot Montāžas Skala 

(Tas sāks 2 nedēļu bezmaksas izmēģinājuma versiju - kredītkartes nav nepieciešamas)


Intro to Geometry - Trapezoid Frayer Model
Intro to Geometry - Trapezoid Frayer Model

Piemērs

Pielāgot šo izklāsts

(Tas sāks 2 nedēļu bezmaksas izmēģinājuma versiju - kredītkartes nav nepieciešamas)


Start My Bezmaksas Izmēģinājuma

Izveidot Montāžas Skala 

(Tas sāks 2 nedēļu bezmaksas izmēģinājuma versiju - kredītkartes nav nepieciešamas)



Palīdzēt Share Storyboard That!

Meklējat Vairāk?

Pārbaudiet pārējo mūsu Skolotājs ceļvežu un stundu plāniem!


Visas Skolotājs Gidi un Mācību plāniEd tech blogPamatskolaVidusskolā ELAvidusskola ELASvešvalodaĪpaša EdASV vēstures un sociālo zinībuPasaules vēsture

Mūsu Plakāti par ZazzleMūsu Nodarbības uz Skolotājiem Skolotāju Atalgošanai
https://www.storyboardthat.com/lv/lesson-plans/ievads-ģeometrija
© 2018 - Clever Prototypes, LLC - Visas tiesības aizsargātas.
Start My Bezmaksas Izmēģinājuma
Izpētiet Mūsu Rakstus un Piemēri

Pamēģiniet Citas Websites!

Photos for Class - Meklēt School-Safe, Creative Commons fotogrāfijas! (Tā pat Citē Jums!)
Quick Rubric - Viegli Marka un Share Great Looking rubrikām!
Dod citu valodu?

•   (English) Introduction to Geometry   •   (Español) Introducción a la Geometría   •   (Français) Introduction à la Géométrie   •   (Deutsch) Einführung in die Geometrie   •   (Italiana) Introduzione Alla Geometria   •   (Nederlands) Inleiding tot Geometry   •   (Português) Introdução à Geometria   •   (עברית) מבוא גיאומטריה   •   (العَرَبِيَّة) مقدمة في الهندسة   •   (हिन्दी) परिचय करने के लिए ज्यामिति   •   (ру́сский язы́к) Введение в Геометрию   •   (Dansk) Introduktion til Geometri   •   (Svenska) Introduktion Till Geometri   •   (Suomi) Johdatus Geometry   •   (Norsk) Introduksjon til Geometri   •   (Türkçe) Geometriye Giriş   •   (Polski) Wprowadzenie do Geometrii   •   (Româna) Introducere Geometrie   •   (Ceština) Úvod do Geometrie   •   (Slovenský) Úvod do Geometrie   •   (Magyar) Bevezetés a Geometria   •   (Hrvatski) Uvod u Geometriju   •   (български) Въведение в Геометрията   •   (Lietuvos) Įvadas į Geometrijos   •   (Slovenščina) Uvod v Geometrija   •   (Latvijas) Ievads Ģeometrija   •   (eesti) Sissejuhatus Geomeetria