Quando os alunos aprendem sobre frações, um auxílio visual pode ser extremamente útil. As frações mostram partes iguais . As imagens que mostram formas particionadas em seções que não são do mesmo tamanho não mostram exemplos de frações. Nesta atividade, você mostrará imagens de formas que foram divididas igualmente e desigualmente. Nesta atividade, os alunos identificarão se algo é uma fração e determinarão qual é a fração.
Permita que os alunos identifiquem o número total de partes de um todo, como um círculo, para encontrar o denominador. A parte inferior da fração representa o número de partições (partes iguais). Cada pedaço do todo é, portanto, um do todo. Peça aos alunos que adivinhem como chamar cada parte (metade, um terço, um quarto etc.) e criem um gráfico juntos para mostrar as primeiras frações de unidades comuns.
O storyboard acima fornece uma excelente ajuda visual para usar como parte de uma apresentação, e você pode transformá-lo em uma tarefa para os alunos, alterando o exemplo e adicionando à tarefa. As instruções para isso estão incluídas abaixo. Os alunos também podem criar seus próprios quadrinhos instrucionais sobre frações como uma avaliação do entendimento.
(Essas instruções são totalmente personalizáveis. Depois de clicar em "Copiar atividade", atualize as instruções na guia Editar da tarefa.)
Identifique se a imagem mostra uma fração (mostra partes iguais) e, em caso afirmativo, identifique as frações que compõem a forma.
Reúna objetos como peças de frações, círculos de papel ou itens do cotidiano e use-os para permitir que os estudantes partilhem e comparem partes iguais. Experiências táteis reforçam como as frações unitárias representam partes iguais e ajudam os alunos a visualizar denominadores de forma concreta.
Mostre como dividir objetos comuns de sala de aula (como uma barra de granola ou uma folha de papel) em partes iguais para criar frações unitárias. Conectar matemática à vida diária torna as frações mais relacionáveis para os estudantes e incentiva o envolvimento.
Solicite aos alunos que rotulem cada parte igual como 1/2, 1/3, 1/4, etc., e que expliquem seu raciocínio para um colega ou para a turma. Explicações orais aumentam a confiança e reforçam a compreensão das partes fracionárias.
Construa um gráfico visual juntos que mostre formas divididas em metades, terceiras, quartas, e assim por diante, com rótulos. Exibir esse gráfico ajuda a consolidar a conexão entre modelos visuais e nomes de frações.
Peça aos alunos que desenhem ou construam uma forma dividida em partes iguais e rotulem uma parte como fração unitária antes de sair da aula. Avaliações rápidas oferecem feedback imediato e destacam quem pode precisar de mais suporte.
Uma fração unitária é uma fração em que o numerador é 1 e o denominador é qualquer número inteiro. Por exemplo, 1/2, 1/3 e 1/4 são todas frações unitárias. Você pode explicá-la como uma parte de seções iguais de um todo, como uma fatia de pizza cortada em pedaços iguais.
Ensine os estudantes a procurarem por partes iguais na forma. Se todas as seções forem do mesmo tamanho, a forma mostra uma fração. Se alguma parte for maior ou menor, não é uma fração. Use recursos visuais e peça aos estudantes que comparem os tamanhos de cada parte.
Peça aos estudantes que contarem o número total de partes iguais em que o todo foi dividido. Esse número se torna o denominador (o número na parte inferior da fração). Por exemplo, se um círculo é dividido em 4 partes iguais, o denominador é 4.
Use roteiros ou quadrinhos que mostrem formas divididas em partes iguais e desiguais. Deixe os estudantes rotularem as frações e criarem seus próprios quadrinhos instrucionais para demonstrar compreensão. Atividades visuais e interativas ajudam a tornar as frações concretas.
Reconhecer partes iguais é essencial porque as frações representam partes iguais de um todo. Se as partes não forem iguais, a forma não representa realmente uma fração, o que pode confundir os estudantes ao aprenderem a ler e escrever frações.