Exploring the Art of Experimental Design: A Step-by-Step Guide for Students and Educators

By Oliver Smith

Experimental Design for Students


Experimental design is a key method used in subjects like biology, chemistry, physics, psychology, and social sciences. It helps us figure out how different factors affect what we're studying, whether it's plants, chemicals, physical laws, human behavior, or how society works. Basically, it's a way to set up experiments so we can test ideas, see what happens, and make sense of our results. It's super important for students and researchers who want to answer big questions in science and understand the world better. Experimental design skills can be applied in situations ranging from problem solving to data analysis; they are wide reaching and can frequently be applied outside the classroom. The teaching of these skills is a very important part of science education, but is often overlooked when focused on teaching the content. As science educators, we have all seen the benefits practical work has for student engagement and understanding. However, with the time constraints placed on the curriculum, the time needed for students to develop these investigative skills can get squeezed out. Too often they get a ‘recipe’ to follow, which doesn’t allow them to take ownership of their practical work. From a very young age, they start to think about the world around them. They ask questions then use observations and evidence to answer them. Students tend to have intelligent, interesting, and testable questions that they love to ask. As educators, we should be working towards encouraging these questions and in turn, nurturing this natural curiosity in the world around them.

Teaching the design of experiments and letting students develop their own questions and hypotheses takes time. These materials have been created to scaffold and structure the process to allow teachers to focus on improving the key ideas in experimental design. Allowing students to ask their own questions, write their own hypotheses, and plan and carry out their own investigations is a valuable experience for them. This will lead to students having more ownership of their work. When students carry out the experimental method for their own questions, they reflect on how scientists have historically come to understand how the universe works.


Start Free Trial*

Experimental Design

(This Will Start a 2-Week Free Trial - No Credit Card Needed)


Take a look at the printer-friendly pages and worksheet templates below!

What are the Steps of Experimental Design?

Embarking on the journey of scientific discovery begins with mastering the steps of experimental design. This foundational process is essential for formulating experiments that yield reliable and insightful results, guiding researchers and students alike through the detailed planning and execution of their studies. By leveraging an experimental design template, participants can ensure the integrity and validity of their findings. Whether it's through designing a scientific experiment or engaging in experimental design activities, the aim is to foster a deep understanding of the fundamentals: How should experiments be designed? What are the 7 steps of experimental design? How can you design your own experiment?

This is an exploration of the seven key experimental method steps, experimental design ideas, and ways to integrate design of experiments. Student projects can benefit greatly from supplemental worksheets and we will also provide resources such as worksheets aimed at teaching experimental design effectively. Let’s dive into the essential stages that underpin the process of designing an experiment, equipping learners with the tools to explore their scientific curiosity.

1. Question

This is a key part of the scientific method and the experimental design process. Students enjoy coming up with questions. Formulating questions is a deep and meaningful activity that can give students ownership over their work. A great way of getting students to think of how to visualize their questions is using a mind map storyboard.


Start Free Trial*

Free Customizable Experimental Design in Science Questions Spider Map

Copy this Storyboard

(This Will Start a 2-Week Free Trial - No Credit Card Needed)


Editable Blank Experimental Design Process Sheet for Science

Copy this Storyboard

(This Will Start a 2-Week Free Trial - No Credit Card Needed)


Customizable Templates for Design of Experiments Student Projects

Copy this Storyboard

(This Will Start a 2-Week Free Trial - No Credit Card Needed)


Ask students to think of any questions they want to answer about the universe or get them to think about questions they have about a particular topic. All questions are good questions, but some are easier to test than others.


2. Hypothesis

A hypothesis is known as an educated guess. A hypothesis should be a statement that can be tested scientifically. At the end of the experiment, look back to see whether the conclusion supports the hypothesis or not.

Forming good hypotheses can be challenging for students to grasp. It is important to remember that the hypothesis is not a question, it is a testable statement. One way of forming a hypothesis is to form it as an “if... then...” statement. This certainly isn't the only or best way to form a hypothesis, but can be a very easy formula for students to use when first starting out.

An “if... then...” statement requires students to identify the variables first, and that may change the order in which they complete the stages of the visual organizer. After identifying the variables, the hypothesis then takes the form if [change in independent variable], then [change in dependent variable].

For example, if an experiment were looking for the effect of caffeine on reaction time, the independent variable would be amount of caffeine and the dependent variable would be reaction time. The “if, then” hypothesis could be: If you increase the amount of caffeine taken, then the reaction time will decrease.


3. Explanation of Hypothesis

What led you to this hypothesis? What is the scientific background behind your hypothesis? Depending on age and ability, students use their prior knowledge to explain why they have chosen their hypotheses, or alternatively, research using books or the internet. This could also be a good time to discuss with students what a reliable source is.

For example, students may reference previous studies showing the alertness effects of caffeine to explain why they hypothesize caffeine intake will reduce reaction time.


4. Prediction

The prediction is slightly different to the hypothesis. A hypothesis is a testable statement, whereas the prediction is more specific to the experiment. In the discovery of the structure of DNA, the hypothesis proposed that DNA has a helical structure. The prediction was that the X-ray diffraction pattern of DNA would be an X shape.

Students should formulate a prediction that is a specific, measurable outcome based on their hypothesis. Rather than just stating "caffeine will decrease reaction time," students could predict that "drinking 2 cans of soda (90mg caffeine) will reduce average reaction time by 50 milliseconds compared to drinking no caffeine."


5. Identification of Variables

Below is an example of a Discussion Storyboard that can be used to get your students talking about variables in experimental design.


Start Free Trial*

Experimental Design in Science Discussion Storyboard with Students

Copy this Storyboard

(This Will Start a 2-Week Free Trial - No Credit Card Needed)


The three types of variables you will need to discuss with your students are dependent, independent, and controlled variables. To keep this simple, refer to these as "what you are going to measure", "what you are going to change", and "what you are going to keep the same". With more advanced students, you should encourage them to use the correct vocabulary.

Dependent variables are what is measured or observed by the scientist. These measurements will often be repeated because repeated measurements makes your data more reliable.

The independent variable is a variable that scientists decide to change to see what effect it has on the dependent variable. Only one is chosen because it would be difficult to figure out which variable is causing any change you observe.

Controlled variables are quantities or factors that scientists want to remain the same throughout the experiment. They are controlled to remain constant, so as to not affect the dependent variable. Controlling these allows scientists to see how the independent variable affects the dependent variable.

Use this example below in your lessons, or delete the answers and set it as an activity for students to complete on Storyboard That.

How temperature affects the amount of sugar able to be dissolved in water
Independent VariableWater Temperature
(Range 5 different samples at 10°C, 20°C, 30°C, 40°C and 50°C)
Dependent VariableThe amount of sugar that can be dissolved in the water, measured in teaspoons.
Controlled Variables
  • Volume of water (500 mL - measured using a graduated cylinder)
  • Type of water (get the water from the same tap)
  • Whether the water is stirred or not
  • Type of sugar
  • Grain size of the sugar


Start Free Trial*

6. Risk Assessment

Ultimately this must be signed off on by a responsible adult, but it is important to get students to think about how they will keep themselves safe. In this part, students should identify potential risks and then explain how they are going to minimize risk. An activity to help students develop these skills is to get them to identify and manage risks in different situations. Using the storyboard below, get students to complete the second column of the T-chart by saying, "What is risk?", then explaining how they could manage that risk. This storyboard could also be projected for a class discussion.


Start Free Trial*

Risk Assessment Storyboard for Experimental Design in Science

Copy this Storyboard

(This Will Start a 2-Week Free Trial - No Credit Card Needed)


7. Materials

In this section, students will list the materials they need for the experiments, including any safety equipment that they have highlighted as needing in the risk assessment section. This is a great time to talk to students about choosing tools that are suitable for the job. You are going to use a different tool to measure the width of a hair than to measure the width of a football field!


8. General Plan and Diagram

It is important to talk to students about reproducibility. They should write a procedure that would allow their experimental method to be reproduced easily by another scientist. The easiest and most concise way for students to do this is by making a numbered list of instructions. A useful activity here could be getting students to explain how to make a cup of tea or a sandwich. Act out the process, pointing out any steps they’ve missed.

For English Language Learners and students who struggle with written English, students can describe the steps in their experiment visually using Storyboard That.

Not every experiment will need a diagram, but some plans will be greatly improved by including one. Have students focus on producing clear and easy-to-understand diagrams.

For example, a procedure to test the effect of sunlight on plant growth could detail:

  1. Select 10 similar seedlings of the same age and variety
  2. Prepare 2 identical trays with the same soil mixture
  3. Place 5 plants in each tray; label one set "sunlight" and one set "shade"
  4. Position sunlight tray by a south-facing window, and shade tray in a dark closet
  5. Water both trays with 50 mL water every 2 days
  6. After 3 weeks, remove plants and measure heights in cm

9. Carry Out Experiment

Once their procedure is approved, students should carefully carry out their planned experiment, following their written instructions. As data is collected, students should organize the raw results in tables, graphs, photos or drawings. This creates clear documentation for analyzing trends.

Some best practices for data collection include:


For example, in the plant growth experiment, students could record:

GroupSunlightSunlightSunlightShadeShade
Plant ID12312
Start Height5 cm4 cm5 cm6 cm4 cm
End Height18 cm17 cm19 cm9 cm8 cm

They would also describe observations like leaf color change or directional bending visually or in writing.

It is crucial that students practice safe science procedures. Adult supervision is required for experimentation, along with proper risk assessment.

Well-documented data collection allows for deeper analysis after experiment completion to determine whether hypotheses and predictions were supported.


Completed Examples


Start Free Trial*

Editable Scientific Investigation Design Example: Moldy Bread

Copy this Storyboard

(This Will Start a 2-Week Free Trial - No Credit Card Needed)


Customizable Design of Experiments Project Ideas for High School: Moldy Bread

Copy this Storyboard

(This Will Start a 2-Week Free Trial - No Credit Card Needed)


Resources and Experimental Design Examples

Using visual organizers is an effective way to get your students working as scientists in the classroom.

There are many ways to use these investigation planning tools to scaffold and structure students' work while they are working as scientists. Students can complete the planning stage on Storyboard That using the text boxes and diagrams, or you could print them off and have students complete them by hand. Another great way to use them is to project the planning sheet onto an interactive whiteboard and work through how to complete the planning materials as a group. Project it onto a screen and have students write their answers on sticky notes and put their ideas in the correct section of the planning document.

Very young learners can still start to think as scientists! They have loads of questions about the world around them and you can start to make a note of these in a mind map. Sometimes you can even start to ‘investigate’ these questions through play.

The foundation resource is intended for elementary students or students who need more support. It is designed to follow exactly the same process as the higher resources, but made slightly easier. The key difference between the two resources are the details that students are required to think about and the technical vocabulary used. For example, it is important that students identify variables when they are designing their investigations. In the higher version, students not only have to identify the variables, but make other comments, such as how they are going to measure the dependent variable. As well as the difference in scaffolding between the two levels of resources, you may want to further differentiate by how the learners are supported by teachers and assistants in the room.

Students could also be encouraged to make their experimental plan easier to understand by using graphics, and this could also be used to support ELLs.


Start Free Trial*

Customizable Foundation Experimental Design Steps T Chart Template

Copy this Storyboard

(This Will Start a 2-Week Free Trial - No Credit Card Needed)


Free Experimental Design Steps T Chart Template for High School

Copy this Storyboard

(This Will Start a 2-Week Free Trial - No Credit Card Needed)


Assessment

Students need to be assessed on their science inquiry skills alongside the assessment of their knowledge. Not only will that let students focus on developing their skills, but will also allow them to use their assessment information in a way that will help them improve their science skills. Using Quick Rubric, you can create a quick and easy assessment framework and share it with students so they know how to succeed at every stage. As well as providing formative assessment which will drive learning, this can also be used to assess student work at the end of an investigation and set targets for when they next attempt to plan their own investigation. The rubrics have been written in a way to allow students to access them easily. This way they can be shared with students as they are working through the planning process so students know what a good experimental design looks like.


Experimental Design Foundation
Experimental Design Higher

Printable Resources

Return to top


Start Free Trial*

Print Ready Experimental Design Idea Sheet

Copy this Storyboard

(This Will Start a 2-Week Free Trial - No Credit Card Needed)


Print Ready Experimental Design Scientific Method Worksheet (Advanced)

Copy this Storyboard

(This Will Start a 2-Week Free Trial - No Credit Card Needed)


Printable Experimental Design Process Variables T Chart Template

Copy this Storyboard

(This Will Start a 2-Week Free Trial - No Credit Card Needed)


Related Activities


Start Free Trial*


Additional Worksheets

If you're looking to add additional projects or continue to customize worksheets, take a look at several template pages we've compiled for you below. Each worksheet can be copied and tailored to your projects or students! Students can also be encouraged to create their own if they want to try organizing information in an easy to understand way.




{Microdata type="HowTo" id="853"}

Start Free Trial*

Frequently Asked Questions about Experimental Design for Students

What are some common experimental design tools and techniques that students can use?

Common experimental design tools and techniques that students can use include random assignment, control groups, blinding, replication, and statistical analysis. Students can also use observational studies, surveys, and experiments with natural or quasi-experimental designs. They can also use data visualization tools to analyze and present their results.

How can experimental design help students develop critical thinking skills?

Experimental design helps students develop critical thinking skills by encouraging them to think systematically and logically about scientific problems. It requires students to analyze data, identify patterns, and draw conclusions based on evidence. It also helps students to develop problem-solving skills by providing opportunities to design and conduct experiments to test hypotheses.

How can experimental design be used to address real-world problems?

Experimental design can be used to address real-world problems by identifying variables that contribute to a particular problem and testing interventions to see if they are effective in addressing the problem. For example, experimental design can be used to test the effectiveness of new medical treatments or to evaluate the impact of social interventions on reducing poverty or improving educational outcomes.

What are some common experimental design pitfalls that students should avoid?

Common experimental design pitfalls that students should avoid include failing to control variables, using biased samples, relying on anecdotal evidence, and failing to measure dependent variables accurately. Students should also be aware of ethical considerations when conducting experiments, such as obtaining informed consent and protecting the privacy of research subjects.

Image Attributions